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CHAPTER 1

About

The stmetrics is a python package that provides the extraction of state-of-the-art time-series features. These features
can be used for remote sensing time-series image classification and analysis.

Producing reliable land use and land cover maps to support the deployment and operation of public policies is a
necessity, especially when environmental management and economic development are considered. To increase the
accuracy of these maps, satellite image time-series (provided as Analysis Ready Data - ARD) have been used, as they
allow the understanding of land cover dynamics through the time.

This package is developed under the Brazil Data Cube project that is part of the “Environmental Monitoring of Brazil-
ian Biomes project”, funded by the Amazon Fund through the financial collaboration of the Brazilian Development
Bank (BNDES) and the Foundation for Science, Technology and Space Applications (FUNCATE) no. 17.2.0536.1.
Brazil Data Cube is the successor of the research project e-sensing, funded by FAPESP (Fapesp 2014/08398-6).
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CHAPTER 2

License

MIT License
Copyright (c) 2019 INPE.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
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CHAPTER 3
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CHAPTER 4

Publications

Soares, A. R., Bendini, H. N., Vaz, D. V., Uehara, T. D., Neves, A. K., Lechler, S., Korting, T. S., Fonseca, L. M.
G. STMETRICS: A PYTHON PACKAGE FOR SATELLITE IMAGE TIME-SERIES FEATURE EXTRACTION.
Conference: 2020 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2020).

Uehara, T. D. T., Soares, A. R., Quevedo, R. P, Korting, T. S., Fonseca, L. M. G., & Adami, M. LAND COVER
CLASSIFICATION OF AN AREA SUSCEPTIBLE TO LANDSLIDES USING RANDOM FOREST AND NDVI
TIME SERIES DATA. Conference: 2020 IEEE International Geoscience and Remote Sensing Symposium (IGARSS
2020).

Soares, A. R., Korting, T. S., Fonseca, L. M. G., Bendini, H. N. SIMPLE NONLINEAR ITERATIVE TEMPORAL
CLUSTERING. IEEE Transactions on Geoscience and Remote, 2020 (Early Access).



http://brazildatacube.org/wp-content/uploads/2020/06/202008_IGARSS-2020_STMETRICS_Soares-etal.pdf
https://www.researchgate.net/publication/344501444_LAND_COVER_CLASSIFICATION_OF_AN_AREA_SUSCEPTIBLE_TO_LANDSLIDES_USING_RANDOM_FOREST_AND_NDVI_TIME_SERIES_DATA
https://www.researchgate.net/publication/344501444_LAND_COVER_CLASSIFICATION_OF_AN_AREA_SUSCEPTIBLE_TO_LANDSLIDES_USING_RANDOM_FOREST_AND_NDVI_TIME_SERIES_DATA
https://www.researchgate.net/publication/344501444_LAND_COVER_CLASSIFICATION_OF_AN_AREA_SUSCEPTIBLE_TO_LANDSLIDES_USING_RANDOM_FOREST_AND_NDVI_TIME_SERIES_DATA
https://ieeexplore.ieee.org/document/9258957
https://ieeexplore.ieee.org/document/9258957
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CHAPTER B

Metrics module

Module for computing metrics

stmetrics.metrics.get_metrics (series, metrics_dict={"basics’: ['all’], 'fractal’: [’all’], ’polar’:
[’all’]}, nodata=-9999, show=Fualse)
This function performs the computation of the basic, polar and fractal metrics available in the stmetrics package.

Parameters
* timeseries (numpy.ndarray) — Time series.
* metrics_dict (dictionary) — Dictionary with metrics to be computed.
* nodata (int)— nodata of the time series. Default is -9999.

Returns time_metrics Dicitionary of metrics.

stmetrics.metrics.sits2metrics (dataset, metrics={ basics’: [’all’], 'fractal’: [’all’], ’polar’:

[’all’]}, num_cores=-1)
This function performs the computation of the metrics using multiprocessing.

Parameters

* dataset (rasterio dataset, numpy array (ZxMxN) - Z 1is the
time series lenght or xarray.Dataset) - Time series.

* metrics_dict (dictionary) - Dictionary with metrics to be computed.
* num_cores (integer)— Number of cores to be used. Value -1 means all cores available.

Returns image Numpy matrix of metrics or xarray.Dataset with the metrics as an dataset. The
orders of the dimensions, follows the dictionary provided.
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CHAPTER O

Polar metrics

Module for computing polar metrics, that are derived from a time wheel legend, projecting the values of a timeseries
to angles in the interval [0, 2pi].

stmetrics.polar.angle (timeseries, nodata=-9999)
Angle - The main angle of the closed shape created by the polar visualization. If two angle are the same, the
first one is presented.

Parameters

e timeseries (numpy.ndarray) — Time series.

* nodata (int)— nodata of the time series. Default is -9999.
Return angle The main angle of time series.

stmetrics.polar.area_ gl (timeseries, nodata=-9999)
Area of the closed shape over the first quadrant.

Parameters

* timeseries (numpy.ndarra)— Time series.

* nodata (int)— nodata of the time series. Default is -9999.
Return area_ql Area of polygon that covers quadrant 1.

stmetrics.polar.area_qg2 (timeseries, nodata=-9999)
Area_Q?2 - Area of the closed shape over the second quadrant.

Parameters

* timeseries (numpy.ndarray)— Time series.

* nodata (int)— nodata of the time series. Default is -9999.
Return area_q2 Area of polygon that covers quadrant 2.

stmetrics.polar.area_g3 (timeseries, nodata=-9999)
Area of the closed shape over the thrid quadrant.

Parameters

11



stmetrics, Release 0.1.5.0

e timeseries (numpy.ndarray)— Time series.
* nodata (int)— nodata of the time series. Default is -9999.
Return area_q3 Area of polygon that covers quadrant 3.

stmetrics.polar.area_qg4 (timeseries, nodata=-9999)
Area of the closed shape over the fourth quadrant.

Parameters

* timeseries (numpy.ndarray) — Time series.

* nodata (int)— nodata of the time series. Default is -9999.
Return area_q4 Area of polygon that covers quadrant 4.

stmetrics.polar.area_season (timeseries, nodata=-9999)
Partial area of the shape, proportional to some quadrant of the polar representation.

This metric returns the area of the polygon on each quadrant.
area2—-areal | | area3—-area4
Parameters
* timeseries (numpy.ndarray)— Time series.
* nodata (int) - nodata of the time series. Default is -9999.
Return area The area of the time series that intersected each quadrant that represents a season.

stmetrics.polar.area_ts (timeseries, nodata=-9999)
Area - Area of the closed shape.

Parameters

* timeseries (numpy.ndarray)— Time series.

* nodata (int)—nodata of the time series. Default is -9999.
Return area_ts Area of polygon.

stmetrics.polar.csi (timeseries, nodata=-9999)
Cell Shape Index - This is a dimensionless quantitative measure of morphology, that characterize the standard
deviation of an object from a circle.

Parameters
* timeseries (numpy.ndarray)— Time series.
* nodata (int)— nodata of the time series. Default is -9999.

Return shape_index Quantitative measure of morphology.

Note: Rational of this metric:

After polar transformation time series usually have a round shape, which can be releate do cell in some cases.
That’s why cell shape index is available here.

stmetrics.polar.ecc_metric (timeseries, nodata=-9999)
Return values close to 0 if the shape is a circle and 1 if the shape is similar to a line.

Parameters

e timeseries (numpy.ndarray) — Time series.
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* nodata (int) - nodata of the time series. Default is -9999.
Return eccentricity Eccentricity of time series after polar transformation.

stmetrics.polar.get_seasons (x,Yy)
This function polygons that represents the four season of a year. They are used to compute the metric
area_season.

Parameters
* x (numpy.array) — x-coordinate in polar space.
* y (numpy.array) — y-coordinate in polar space.
Returns tuple of polygons Quadrant polygons

stmetrics.polar.gyration_radius (timeseries, nodata=-9999)
Gyration_radius - Equals the average distance between each point inside the shape and the shape’s centroid.

Parameters
* timeseries (numpy.ndarray)— Time series.
* nodata (int)— nodata of the time series. Default is -9999.

Return gyration_radius Average distance between each point inside the shape and the shape’s cen-
troid.

stmetrics.polar.polar_balance (timeseries, nodata=-9999)
Polar_balance - The standard deviation of the areas per season, considering the 4 seasons.

Parameters

e timeseries (numpy.ndarray) — Time series.

* nodata (int) - nodata of the time series. Default is -9999.
Return polar_balance Standard deviation of the areas per season.

stmetrics.polar.polar_plot (timeseries, nodata=-9999)
This function create a plot of time series in polar space.

Parameters

* timeseries (numpy.ndarray)— Time series.

* nodata (int)— nodata of the time series. Default is -9999.
Returns plot Plot of time series in polar space.

stmetrics.polar.symmetric_distance (time_series_1, time_series_2, nodata=-9999)
This function computes the difference between two time series in the polar space.

Parameters

* timeseriesl — Time series.

* timeseries2 — Time series.

* nodata (int)—nodata of the time series. Default is -9999.
Returns dist Distance between two time series.

stmetrics.polar.ts_polar (timeseries, funcs=["all’], nodata=-9999, show=False)
This function compute 9 polar metrics:

* Area - Area of the closed shape.

* Angle - The main angle of the closed shape created after transformation.

13
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* Area_ql - Partial area of the shape, proportional to quadrant 1 of the polar representation.

* Area_q2 - Partial area of the shape, proportional to quadrant 2 of the polar representation.

* Area_q3 - Partial area of the shape, proportional to quadrant 3 of the polar representation.

* Area_g4 - Partial area of the shape, proportional to quadrant 4 of the polar representation.

* Polar_balance - The standard deviation of the areas per season, considering the 4 seasons.

* Eccenticity - Return values close to 0 if the shape is a circle and 1 if the shape is similar to a line.

» Gyration_radius - Equals the average distance between each point inside the shape and the shape’s centroid.

» CSI - This is a dimensionless quantitative measure of morphology, that characterize the standard deviation
of an object from a circle.

To visualize the time series on polar space use: ts_polar(timeseries, show=True)
Parameters
e timeseries (numpy.ndarray) — Time series.
* nodata (boolean)— nodata of the time series. Default is -9999.
* show — This inform that the polar plot must be presented.

Returns out_metrics Dictionary with polar metrics values.

Tip: Check the original publication of the metrics: Korting, Thales & Camara, Gilberto & Fonseca, Leila.
(2013). Land Cover Detection Using Temporal Features Based On Polar Representation.
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CHAPTER /

Basic metrics

Module for computing basic metrics, including sum of values, average value, amplitude (max - min), and so on. We
provide a function to compute all metrics in a single call (t s_basics).

stmetrics.basics.abs_sum_ts (timeseries, nodata=-9999)
Sum of absolute values of the time series. All values are converted to absolute (positive) values, and are summed.

Parameters

* timeseries (numpy.ndarray)— Time series.

* nodata (int)— nodata of the time series. Default is -9999.
Returns Sum of absolute values of the time series.

stmetrics.basics.amd_ts (timeseries, nodata=-9999)
Computes the mean of the absolute derivative of time series.

Regarding to vegetation it provides information on the growth rate of vegetation, allowing discrimination of
natural cycles from crop cycles.

Parameters

e timeseries (numpy.ndarray) — Time series.

* nodata (int)—nodata of the time series. Default is -9999.
Returns The mean of the absolute derivative of time series.

stmetrics.basics.amplitude_ts (timeseries, nodata=-9999)
The difference between the maximum and minimum values of the time series.

Parameters

* timeseries (numpy.ndarray)— Time series.

* nodata (int)— nodata of the time series. Default is -9999.
Returns Amplitude of values of time series.

stmetrics.basics.fqr_ts (timeseries, nodata=-9999)
Computes the first quartile of a time series.

15
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Parameters

* timeseries (numpy.ndarray)— Time series.

* nodata (int)— nodata of the time series. Default is -9999.
Returns The first quartile of the time series.

stmetrics.basics.fslope_ts (timeseries, nodata=-9999)
Maximum value of the first slope of the time series. It indicates when some abrupt change happened in the time
series.

Parameters

* timeseries (numpy.ndarray) — Time series.

* nodata (int)— nodata of the time series. Default is -9999.
Returns The maximum value of the first slope of time series.

stmetrics.basics.iqr_ts (timeseries, nodata=-9999)
Computes the interquaritle range of the time series.

Parameters

* timeseries (numpy.ndarray) — Time series.

* nodata (int)— nodata of the time series. Default is -9999.
Returns The interquaritle range of the time series.

stmetrics.basics.max_ts (timeseries, nodata=-9999)
Maximum value of the time series.

Parameters

* timeseries (numpy.ndarray)— Time series.

* nodata (int)— nodata of the time series. Default is -9999.
Returns Maximum value of time series.

stmetrics.basics.mean_ts (timeseries, nodata=-9999)
Average value (mean) of the time series, considering only valid values. When nodata is found, it is not included
in N value (for all functions).

Parameters

* timeseries (numpy.ndarray) — Time series.

* nodata (int)— nodata of the time series. Default is -9999.
Returns Mean value of time series.

stmetrics.basics.min_ts (timeseries, nodata=-9999)
Minimum value of the time series.

Parameters

* timeseries (numpy.ndarray) — Time series.

* nodata (int)— nodata of the time series. Default is -9999.
Returns Minimum value of time series.

stmetrics.basics.mse_ts (timeseries, nodata=-9999)
Computes mean spectral energy of a time series.

16 Chapter 7. Basic metrics



stmetrics, Release 0.1.5.0

Mean spectral energy density computes the energy of the time series that is distributed with frequency. High

frequency time series usually have lower spectral energy.
Parameters
* timeseries (numpy.ndarray)— Time series.
* nodata (int)— nodata of the time series. Default is -9999.
Returns The mean spectral energy of the time series.

stmetrics.basics.skew_ts (timeseries, nodata=-9999)
Measures the asymmetry of the time series.

Parameters

* timeseries (numpy.ndarray)— Time series.

* nodata (int)— nodata of the time series. Default is -9999.
Returns The asymmetry of time series.

stmetrics.basics.sqr_ts (timeseries, nodata=-9999)
Computes the second quartile of the time series.

Parameters

e timeseries (numpy.ndarray)— Time series.

* nodata (int)— nodata of the time series. Default is -9999.
Returns The second quartile of the time series.

stmetrics.basics.std_ts (timeseries, nodata=-9999)
Standard deviation of the time series.

Parameters

* timeseries (numpy.ndarray) — Time series.

* nodata (int)— nodata of the time series. Default is -9999.
Returns Standard deviation of time series.

stmetrics.basics.sum_ts (timeseries, nodata=-9999)
Sum of values of the time series.

When dealing with vegetation analysis, this value can be a proxy of the annual production of vegetation.

Parameters

* timeseries (numpy.ndarray)— Time series.

* nodata (int)— nodata of the time series. Default is -9999.
Returns Sum of values of time series.

stmetrics.basics.tqr_ts (timeseries, nodata=-9999)
Computes the third quartile of a time series.

Parameters

e timeseries (numpy.ndarray)— Time series.

* nodata (int)— nodata of the time series. Default is -9999.
Returns The third quartile of the time series.

stmetrics.basics.ts_basics (timeseries, funcs=["all’], nodata=-9999)

17
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This function compute all basic metrics in a single call, returning a dictionary:

“Max” - Maximum value of the time series.

“Min” - Minimum value of the time series.

“Mean” - Average value of the time series.

“Std” - Standard deviation of the time series.

“Sum” - Sum of values over a cycle. Usually is an indicator of the annual production of vegetation.
“Amplitude” - The difference between the time series’s maximum and minimum values.
“MSE” - Mean Spectral Energy.

“First_slope” - Maximum value of the first slope of the cycle.

“Skew” - Measures the asymmetry of the time series.

“AMD” - Absolute mean derivative (AMD).

“AbsSum” - Absolute Sum of values over of the time series.

“IQR” - Interquaritle range (IQR) of the time series.

“FQR” - First quartile of the time series.

“SQR” - Second quartile of the time series.

“TQR” - Third quaritle of the time series.

Parameters

e timeseries (numpy.ndarray)— Time series.

* nodata (real number)—nodata of the time series. Default is -9999.

Returns Dictionary of basic metrics

18
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CHAPTER 8

Fractal metrics

Module for computing fractal metrics

stmetrics.fractal.dfa_£d (timeseries, nvals=None, overlap=True, order=1, nodata=-9999)
Detrended Fluctuation Analysis (DFA) measures the Hurst parameter H, which is very similar to the Hurst
Exponent (HE). The main difference is that DFA can be used for non-stationary time series.

Parameters
* timeseries (numpy.ndarray)— Time series.
e nvals (int)— Sizes of subseries to use.

* overlap (Boolean) — if True, there will be a 50% overlap on windows otherwise non-
overlapping windows will be used.

* order (Boolean) — Polynomial order of trend to remove.
* nodata (int)—nodata of the time series. Default is -9999.

Return dfa Detrended Fluctuation Analysis.

Note: This function uses the Detrended Fluctuation Analysis (DFA) implementation from the Nolds package.
Due to time series characteristcs we use by default the ‘RANSAC’ fitting method as it is more robust to outliers.
For more details regarding the hurst implementation, check Nolds documentation page.

stmetrics.fractal.hurst_exp (timeseries, nvals=None, nodata=-9999)
Computes the Hurst Exponent (HE) by a standard rescaled range (R/S) approach. HE is a self-similarity measure
that assesses long-range dependence in a time series. It can be used to determine whether the time series is more,
less, or equally likely to increase if it has increased in previous steps.

Parameters
* timeseries (numpy.ndarray)— Time series.
* nvals (int) — Sizes of subseries to use.

* nodata (int)— nodata of the time series. Default is -9999.

19
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Return hurst The Hurst Expoent (HE).

Note: This function was adapted from the package Nolds. Due to time series characteristcs we use by default
the ‘RANSAC’ fitting method as it is more robust to outliers. For more details regarding the hurst implementa-
tion, check Nolds documentation page.

stmetrics.fractal.katz_£d (timeseries, nodata=-9999)
Katz fractal dimension.

It is defined by: .. math:: K = frac{log_{10}(n)}{log_{10}(d/L)+log_{10}(n)} where L is the total length of
the time series and d is the Euclidean distance between the first point in the series and the point that provides
the furthest distance with respect to the first point.

Parameters
* timeseries (numpy.ndarray)— Time series.
* nodata (int)— nodata of the time series. Default is -9999.

Return kfd Katz fractal dimension.

Note: This function was adapted from the package entropy available at: https://github.com/raphaelvallat/
entropy.

Tip: To know more about it: Michael J. Katz, Fractals and the analysis of waveforms, Computers in
Biology and Medicine, volume 18, Issue 3,1988, Pages 145-156,ISSN 0010-4825, https://doi.org/10.1016/
0010-4825(88)90041-8. Esteller, R. et al. (2001). A comparison of waveform fractal dimension algorithms.
IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 48(2), 177-183. Goh,
Cindy, et al. “Comparison of fractal dimension algorithms for the computation of EEG biomarkers for demen-
tia.” 2nd International Conference on Computational Intelligence in Medicine and Healthcare (CIMED2005).
2005.

stmetrics.fractal.ts_£fractal (timeseries, funcs=[all’], nodata=-9999)
This function computes 4 fractal dimensions and the hurst exponential.

* DFA: measures the Hurst parameter H, which is similar to the Hurst exponent.
* HE: self-similarity measure that assess long-range dependence in a time series.

» KFD: This algorithm computes the FD using Katz algorithm.

Parameters
e timeseries (numpy.ndarray) — Time series.
* nodata (int)—nodata of the time series. Default is -9999.

Return out_metrics Dictionary with fractal metrics values.

20 Chapter 8. Fractal metrics
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CHAPTER 9

Spatial Module

Module for spatial functions, considering a set of polygons obtained by image segmentation.

stmetrics.spatial.aspect_ratio (geom)
This function computes the aspect ratio of a given geometry.

The Aspect Ratio is the ratio of the length and the width of the minimum bounding rectangle of a polygon.

Parameters geom (shapely.geometry.Polygon)— Polygon geometry

Returns aspect_ratio Polygon aspect_ratio.

stmetrics.spatial.distance (c_series, ic, jc, subim, S, m, rmin, cmin, window=None,

max_dist=None, max_step=None, max_diff=None, penalty=None,
psi=None, pruning=False)

This function computes the spatial-temporal distance between two pixels using the DTW distance.

Parameters

c_series (numpy.ndarray) — average time series of cluster.
ic (int)— X coordinate of cluster center.

je (int) — Y coordinate of cluster center.

subim (int) — Block of image from the cluster under analysis.
S (int) — Pattern spacing value.

m (float)— Compactness value.

rmin (int) - Minimum row.

cmin (int)— Minimum column.

window — Only allow for maximal shifts from the two diagonals smaller than this num-
ber. It includes the diagonal, meaning that an Euclidean distance is obtained by setting
window=1.

max_dist — Stop if the returned values will be larger than this value.

max_step — Do not allow steps larger than this value.

21
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max_diff — Return infinity if length of two series is larger.
penalty — Penalty to add if compression or expansion is applied.
psi —Psirelaxation parameter (ignore start and end of matching). Useful for cyclical series.

use_pruning — Prune values based on Euclidean distance.

Returns D numpy.ndarray distance.

stmetrics.spatial.distance_fast (c_series, ic, jc, subim, S, m, rmin, cmin, window=None,

max_dist=None, max_step=None, max_diff=None,
penalty=None, psi=None)

This function computes the spatial-temporal distance between two pixels using the dtw distance with C imple-

mentation.

Parameters

c_series (numpy.ndarray) — average time series of cluster.
ic (int)— X coordinate of cluster center.

je (int) — Y coordinate of cluster center.

subim (int) — Block of image from the cluster under analysis.
S (int) — Pattern spacing value.

m (fIloat)— Compactness value.

rmin (int) - Minimum row.

cmin (int)— Minimum column.

window — Only allow for maximal shifts from the two diagonals smaller than this num-
ber. It includes the diagonal, meaning that an Euclidean distance is obtained by setting
window=1.

max_dist — Stop if the returned values will be larger than this value.
max_step — Do not allow steps larger than this value.

max_diff — Return infinity if length of two series is larger.
penalty — Penalty to add if compression or expansion is applied.

psi —Psirelaxation parameter (ignore start and end of matching). Useful for cyclical series.

Returns D numpy.ndarray distance.

stmetrics.spatial.dtw_filter (dataset, kernel_size=3, window=None, max_dist=None,

max_step=None, max_length_diff=None, penalty=None,
psi=None, pruning=False)

This function performs a spatio-temporal filtering of datacube using the DTW distance.

Parameters

dataset (shapely.geometry.Polygon)— SITS dataset.
kernel_size (int) - Size of convolutional kernel.

window — Only allow for maximal shifts from the two diagonals smaller than this num-
ber. It includes the diagonal, meaning that an Euclidean distance is obtained by setting
window=1.

max_dist — Stop if the returned values will be larger than this value.

max_step — Do not allow steps larger than this value.

22

Chapter 9. Spatial Module



stmetrics, Release 0.1.5.0

* max_diff — Return infinity if length of two series is larger.
* penalty — Penalty to add if compression or expansion is applied.
* psi — Psirelaxation parameter (ignore start and end of matching). Useful for cyclical series.
* use_pruning - Prune values based on Euclidean distance.
Returns edge Edge image as numpy.ndarray.

>

stmetrics.spatial.extract_features (dataset, segmentation, features=['mean’, ’std’, ’'min’,
‘max’, 'majority’, ’area’, ’perimeter’, 'width’, ’length’,
‘aspect_ratio’, ’'symmetry’, ’compactness’, ’rectangu-
lar_fit’], nodata=-9999)
This function computes features using polygon geometries.

Regarding image features, this function computes 5 features: Mean, Standard Deviation, Minimum, Maximum
and Majority (mode). Along side with the image features, 8 shape features can be computed for each polygon:
Area, Perimeter, Width, Length, Aspect Ratio ratio, Symmetry, Compactness and Rectangular fit.

Parameters

* dataset (Rasterio, Xarray.Dataset or string)-Images or pathtoimages
that compose time series.

* segmentation (geopandas.Dataframe)— Spatio-temporal Segmentation.
e features (11ist) - List of features to be extracted
* nodata (int)— Nodata value

Returns segmentation GeoPandas DataFrame with the features.

stmetrics.spatial.init_cluster_ hex
This function initialize the clusters for SNITC using a hexagonal pattern.

Parameters

* rows (int)— Number of rows of image.

* columns (int)— Number of columns of image.

* ki (int)— Number of desired superpixel.

* img (numpy.ndarray) — Input image.

* bands (int)— Number of bands (lenght of time series).
Returns C ND-array containing cluster centres information.
Returns S Spacing between clusters.

Returns 1 Matrix label.
Returns d Distance matrix from cluster centres.
Returns k Number of superpixels that will be produced.

stmetrics.spatial.init_cluster_ regular
This function initialize the clusters for SNITC using a square pattern.

Parameters
* rows (int)— Number of rows of image.
* columns (int)— Number of columns of image.

* ki (int)— Number of desired superpixel.
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* img (numpy.ndarray) — Input image.

* bands (int)— Number of bands (lenght of time series).
Returns C ND-array containing cluster centres information.
Returns S Spacing between clusters.

Returns 1 Matrix label.
Returns d Distance matrix from cluster centres.
Returns k Number of superpixels that will be produced.

stmetrics.spatial.length (geom)
This function computes the lenght of a geometry.

Parameters geom (shapely.geometry.Polygon)— Polygon geometry.
Returns length Polygon length.

stmetrics.spatial.postprocessing (raster, S)
Post processing function to enforce connectivity.

Parameters
* raster (numpy.ndarray)— Labelled image.
* S (int) - Spacing between superpixels.

Returns final Labelled image with connectivity enforced.

stmetrics.spatial.rectangular_f£fit (geom)
This function computes the rectangular fit of a geometry. The rectangular fit is defined as:

RectFit = (AR — AD)/AO

where AO is the area of the original object, AR is the area of the equal rectangle (AO = AR) and AD is the
overlaid difference between the equal rectangle and the original object (Sun et al. 2015).

Parameters geom (shapely.geometry.Polygon)— Polygon geometry

Returns rectangular_fit Polygon rectangular fit.

Tip: To know more about it:

Sun, Z., Fang, H., Deng, M., Chen, A., Yue, P. and Di, L. “Regular Shape Similarity Index:Novel Index for
Accurate Extraction of Regular Objects From Remote Sensing Images,” IEEE Transactions on Geoscience and
Remote Sensing, v.53, 2015, p. 3737. doi:10.1109/TGRS.2014.2382566

stmetrics.spatial.reock_compactness (geom)
This function computes the reock compactness of a given geometry.

The Reock Score (R) is the ratio of the area of a polygon P to the area of a minimum bounding cirle (AMBC)
that encloses the geometry. This score falls within the range of [0,1] and high values indicates a more compact
geometry.

Reock = Ap/AnmBe

Parameters geom (shapely.geometry.Polygon)— Polygon geometry.

Returns reock Polygon reock compactness.

24 Chapter 9. Spatial Module



stmetrics, Release 0.1.5.0

Tip: To know more about it:

Reock, Ernest C. 1961. “A note: Measuring compactness as a requirement of legislative apportionment.” Mid-
west Journal of Political Science 1(5), 70-74.

stmetrics.spatial.seg_metrics (dataframe, bands=None, metrics_dict={"basics’: [’all’], 'frac-

tal’: [’all’], 'polar’: [’all’]}, features=["mean’], num_cores=-1)
This function compute time series metrics from a geopandas with time features. Currently, basic, polar and

fractal metrics are extracted. but you can set the metrics you to compute using a dictionary.
Parameters
e dataframe (pandas DataFrame)— Pandas DataFrame with time series information.
* bands (1ist) - List of bands from which the metrics should be computed.
* metrics_dict (dictionary) - Dictionary of metrics to be computed.

» features (1ist) — List of features to be used for computation. This parameter allows
you to use the features extracted with ext ract_features function and compute metrics
over image features (mean, max, min, std and mode). If it is None, the code expect that the
DataFrame has only one variable.

Returns out_dataframe Geopandas dataframe with the features added.

stmetrics.spatial.snitc (dataset, ki, m, nodata=0, scale=10000, iter=10, pattern="hexagonal’,
output="shp’, window=None, max_dist=None, max_step=None,

max_diff=None, penalty=None, psi=None, pruning=False)
This function create spatial-temporal superpixels using a Satellite Image Time Series (SITS). Version 1.4

Parameters

* image (Rasterio dataset object or a xarray.DataArray.) - SITS
dataset.

* k (1nt) — Number or desired superpixels.
* m (int)— Compactness value. Bigger values led to regular superpixels.

* nodata (float) — If you dataset contain nodata, it will be replace by this value. This
value is necessary to be possible the use the DTW distance. Ideally your dataset must not
contain nodata.

* scale (int)— Adjust the time series, to 0-1. Necessary to distance calculation.
* iter (int) - Number of iterations to be performed. Default = 10.
* pattern (int) — Type of pattern initialization. Hexagonal (default) or regular (as SLIC).

* output (string)— Type of output to be produced. Default is shp (Shapefile). The two
possible values are shp and matrix (returns a numpy array).

* window — Only allow for maximal shifts from the two diagonals smaller than this num-
ber. It includes the diagonal, meaning that an Euclidean distance is obtained by setting
window=1.

* max_dist — Stop if the returned values will be larger than this value.
* max_step — Do not allow steps larger than this value.
* max_diff — Return infinity if length of two series is larger.

* penalty — Penalty to add if compression or expansion is applied.
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* psi — Psirelaxation parameter (ignore start and end of matching). Useful for cyclical series.
Returns segmentation Segmentation produced.

..Note:: Reference: Soares, A. R., Korting, T. S., Fonseca, L. M. G., Bendini, H. N. Simple Nonlinear Iterative
Temporal Clustering. IEEE Transactions on Geoscience and Remote, 2020 (Early Access).

stmetrics.spatial.symmetry (geom)
This function computes the symmetry of a given geometry.

Symmetry is calculated by dividing the overlapping area (AO), between a polygon P and its reflection across the
horizontal axis by the area of the polygon P (A_p). The range of this score falls between [0,1] and a score closer
to 1 indicates a more compact and regular geometry.

Symmetry = AO/A,

Parameters geom (shapely.geometry.Polygon)— Polygon geometry
Returns symmetry Polygon symmetry.

stmetrics.spatial.update_cluster
This function update clusters.

Parameters
e img (numpy.ndarray) — Input image.
* la (numpy.ndarray) — Matrix label.
* rows (int)— Number of rows of image.
* columns (int)— Number of columns of image.
* bands (int)— Number of bands (lenght of time series).
* k (int) — Number of superpixel.
Returns C_new ND-array containing updated cluster centres information.

stmetrics.spatial.width (geom)
This function computes the width of a geometry.

Parameters geom (shapely.geometry.Polygon)— Polygon geometry.
Returns width Polygon width.

stmetrics.spatial.write_pandas (segmentation, transform, crs)
This function creates a GeoPandas DataFrame of the segmentation.

Parameters
* segmentation (numpy.ndarray)— Segmentation numpy array.
* transform (1ist)— Transformation parameters.
* crs (PROJ4 dict) - Coordinate Reference System.

Returns gdf Segmentation as a geopandas geodataframe.
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cHAaPTER 10

Utility functions

Utility module for stmetrics

stmetrics.utils.bde2xarray (cube_path, list_bands)
This function reads a path with BDC ARD (Brazil Data Cube Analysis Ready Data) and creates an xarray
dataset.

Parameters

* cube_path (string)— Path of folder with images.

* list_bands (1ist)— List of bands that will be available as xarray.
Return cube_dataset Xarray dataset.

stmetrics.utils.check_input (timeseries)
This function checks the input and raises one exception if it is too short or has the wrong type.

Parameters timeseries (numpy.ndarray.)— Your time series.
Raises ValueError — When t imeseries is not valid.

stmetrics.utils.create_polygon (timeseries)
This function converts a time series to the polar space.

If the time series has lenght smaller than 3, it can not be properly converted to the polar space.
Parameters timeseries (numpy.ndarray)— Your time series.
Return polygon Shapely polygon of time series without spikes.

stmetrics.utils.fixseries (timeseries, nodata=-9999)
This function ajusts the time series to polar transformation.

As some time series may have very significant noises (such as spikes), when coverted to polar space it may
produce an inconsistent geometry. To avoid this issue, this function removes this spikes.

Parameters
* timeseries (numpy.ndarray)— Your time series.

* nodata (int)— nodata of the time series. Default is -9999.
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Return fixed_timeseries Numpy array of time series without spikes.

stmetrics.utils.get_list_of_ points (timeseries)
This function creates a list of angles based on the time series that is used to convert a time series to a geometry.

Parameters timeseries (numpy.ndarray)— Your time series.
Return list_of_observations Numpy array of lists of observations after polar transformation.
Return list_of _angles Numpy array of lists of angles after polar transformation.

stmetrics.utils.list_metrics ()
This function lists the available metrics in stmetrics.
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cHAPTER 11

Dependencies

11.1 Installing Python

The following instructions assume you have installed Python as packaged in the Anaconda Python distribution. The
stmetrics in different enviroments using Anaconda.

11.2 Open Command prompt

With Anaconda Prompt update conda package manager to the latest version:

’conda update conda

11.3 Create a conda virtual environment (recommended)

To do it, use:

’conda create —n new_env python=3.7 ‘

where new__env is the name of the environment.

After this, activate the environment with:

’conda activate new_env ‘

11.4 Install proper 3rd-party packages

Before installing smetrics make sure that you have correctly installed Shapely, Rasterio and Geopandas.
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To install using conda, please use:

conda config --add channels conda-forge
conda install shapely
conda install rasterio

conda install geopandas

11.5 stmetrics dependecies on Windows

11.5.1 Installing C++ compiler

As previously stated, the package requires the mingw-w64 compiler. To install mingw-w64 compiler type:

conda install libpython m2w64-toolchain -c msys2

This will install
* libpython package which is needed to import mingw-w64. <https://anaconda.org/anaconda/libpython>

* mingw-w64 toolchain. <https://anaconda.org/msys2/m2w64-toolchain>

Hint: libpython creates automatically distutils.cfqg file, but if it failed use the following instructions to
setup it manually. Go to environment Lib path in Anaconda3\\envs\\new_env\\Lib\\distutils and
create a distutils.cfqg file with a text editor (e.g. Notepad) and add the following lines:

[build]
compiler=mingw32

To find the correct distutils path, run the following lines in python:

>>> import distutils
>>> print (distutils. file )

11.5.2 Install dtaidistance package

The dtaidistance package is mandatory for stmetrics. However, due to some issues, Windows users need to compile
and install directly from source. This was tested with version 1.2.4.

Caution: Make sure that you have numpy and cython already installed!

* Download the source from https://github.com/wannesm/dtaidistance
* Compile the C extensions: python setup.py build_ext -—-inplace

¢ Install into your site-package directory: python setup.py install
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Caution: If OpenMP is not installed in your system you can use:

python3 setup.py —-noopenmp build_ext --inplace

However, if it is not installed, make sure the C++ compiler was properly installed.

Hint: If after installation fast computation using DTW be not available, follow the steps from this page: https:
//dtaidistance.readthedocs.io/en/latest/usage/installation.html#from-pypi

11.6 stmetrics on Linux

At this moment we don’t have reports on issues regarding ubuntu installation.
Follow the installation for 3rd paty dependecies as describe above.

For dtaidistance package just make sure your compiler has openmp and use:

pip install dtaidistance[numpy]
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cHAPTER 12

Installation

stmetrics is mostly written in python, however, due to the spatial-temporal segmentation algorithm available it requires
C++ compiler. Please, prior to install, check the required dependecies at Dependencies. Configuring this compiler is
the critical step in getting the spatial-temporal algorithm running.

12.1 stmetrics on Windows

stmetrics is supported under Windows with the following caveats:
 Python 3.5 or higher
e MSVC compiler is not supported.

12.2 stmetrics on Linux

At this moment we don’t have reports on issues regarding ubuntu installation.

12.2.1 Installing stmetrics

You can use pip install to obtain the latest stmetrics directly from our git repository:

pip install git+https://github.com/brazil-data-cube/stmetrics
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cHAPTER 13

Spatio-temporal Metrics

In this notebook, we present some functionalities to perform Geographic Object Image Analysis (GEOBIA) with Earth
Observation Data Cubes produced by the Brazil Data Cube (BDC) project using the STMETRICS package.

This notebook was designed to present some functionalities of the stmetrics python package. It provides the state-
of-the-art features extraction methods for Satellite Image Time Series (SITS) that can be used for remote sensing
time-series image classification and analysis.

Produce reliable land use and land cover maps to support the deployment and operation of public policies is a necessity,
especially when environmental management and economic development are considered. To increase the accuracy of
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these maps, satellite image time-series have been used, as they allow the understanding of land cover dynamics through
the time.

13.1 Getting started

Our first step is to install the ‘“stmetrics‘‘. To do this you can easily run
'pip install git+https://github.com/brazil-data—-cube/stmetrics

Moreover, to use the datacube produced by the BDC project we need to install the stac.py package. You can do it
using pip.

'pip install stac.py

Ipip install git+https://github.com/brazil-data-cube/stmetrics.git

#import modules

import stac

import numpy

import pandas

import rasterio

import stmetrics

import multiprocessing as mp
import matplotlib.pyplot as plt

#This is just to remove some annoying possible warnings
import warnings
warnings.filterwarnings ('ignore')

13.2 Import test image

Our test image is one of the datacubes produced by the Brazil Data Cube Project. To access the project products we
will use the stac.py package. It can be installed using pip.

'pip install stac.py

Along with stac we must use some utility function to build a small datacube for our test. For this we use the following
functions:

Hint: the stmetrics package uses numpy, rasterio and geopandas in most of its functions. Use help or check the
documentation to undestand it better https://stmetrics.readthedocs.io/en/latest/.

import xarray

def longlat2window (lon, lat, dataset):
Args:
lon (tuple): Tuple of min and max lon
lat (tuple): Tuple of min and max lat
dataset: Rasterio dataset

Returns:

rasterio.windows.Window
nmmwn

(continues on next page)
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def

(continued from previous page)

from pyproj import Proj

from rasterio.warp import transform
from rasterio.windows import Window

p = Proj(dataset.crs)

t = dataset.transform

xmin, ymin = p(lon[0], lat[0])

xmax, ymax = p(lon[l], lat[1l])
col_min, row_min = ~t % (xmin, ymin)
col_max, row_max = ~t * (xmax, ymax)

return Window.from_slices (rows=(numpy.floor (row_max), numpy.ceil (row_min)),
cols=(numpy.floor (col_min), numpy.ceil (col_max)))

file _to_da(filepath, bbox, crop=True):
import re

import numpy

import pandas

import rasterio

import xarray

from affine import Affine

from rasterio.warp import transform

#0pen image as xarray.DataArray
da = xarray.open_rasterio(filepath)

#find datetime
match = re.findall (r'\d{4}-\d{2}-\d{2}', filepath) [-1]
da.coords['time'] = match

# Compute the lon/lat coordinates and build meshgrid
ny, nx = len(da['y']), len(da['x'])
X, y = numpy.meshgrid(dal['x'], dal'y'])

# Rasterio works with 1D arrays

lon, lat = transform(da.crs, {'init': 'EPSG:4326'}, x.flatten(), y.flatten())
lon = numpy.asarray(lon) .reshape((ny, nx))
lat = numpy.asarray (lat) .reshape ((ny, nx))

#add spatial coordinates to xarray
da.coords['lon'] = (('y', 'x'), lon)
da.coords['lat'] = (('y', 'x'), lat)

#Crop xarray if requested
if crop == True:

#Get coordinates
w, s, €, n = bbox.split(',")

#To crop we just use where over lat/long
mask_lon = (da.lon >= float(w)) & (da.lon <= float (e))
mask_lat = (da.lat >= float(s)) & (da.lat <= float (n))

#get cropped xarray.DataArray
da = da.where (mask_lon & mask_lat, drop=True)

return da
(continues on next page)
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(continued from previous page)

def bdc2xray(stac, collection, bbox, time, bands=['ndvi']):
box = ",".join(str(x) for x in bbox)
collection = stac.collection(collection)
items = collection.get_items (filter={"'bbox':box, 'datetime':time, 'limit':1000})

list_of_datasets = []
dataset = xarray.Dataset ()

#get links to images in Brazil Data Cube
for band in bands:

list_of_data_arrays = []

for item in range(len(items.features)):
dataarray = file_to_da(items.features[item].assets[band] ['href'], box )
list_of_data_arrays.append(dataarray)

dataset [band] = xarray.concat (list_of_data_arrays, dim='time')

#load xarray
list_of_datasets.append(dataset)

bdc_xray = xarray.merge(list_of_datasets)

return bdc_xray

13.3 Connect to BDC-stac

Our first step is obtain a datacube, here we will use one of the datacubes produced by the BDC project. To do so,
we will use the stac service provided by the project and the stac . py package, which is also developed by the BDC
team.

bdc_stac = stac.STAC("http://brazildatacube.dpi.inpe.br/stac/")
bdc_stac

stac ("http://brazildatacube.dpi.inpe.br/stac/")

The above result display the list of collections and datacube available.

Now let’s define a bouding box of our interest area. This one is located in the MATOPIBA region in Brazil. For
simplication purpose, for this test only NDVI will be used.

w = —-45.90

n = -12.20

e = —-45.20

s = -12.90

bbox = ( w,s,e,n )

my_bands = ['NDVI']

timeline = '2018-09-01/2019-08-31"
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Now we will use the utility functions available above to create an xarray.Dataset using stac.py.

xarray = bdc2xray (bdc_stac, "CB4_64_16D_STK-1", bbox, timeline, my_bands)

Let’s plot the xarray

xarray.NDVI.plot (x="1lon", y="lat", col="time", col_wrap=4, cmap='gray')

<xarray.plot.facetgrid.FacetGrid at 0xf72bf48>

13.3. Connect to BDC-stac
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Now lets select some sample points to be used in our examples.

img = numpy.squeeze (xarray.NDVI.values)

fig= plt.figure(figsize=(15, 15)) # width, height in inches

sub = fig.add_subplot (1, 2, 1)
sub.imshow (img[0, :, :], cmap = 'gray')
plt.scatter (1100,185,color="r")
plt.scatter (1000,800,color="r")
plt.title('Class: Natural Vegetation - Date 0')
sub = fig.add_subplot (1, 2, 2)
sub.imshow (img[0, :, :], cmap = 'gray')
plt.scatter (450,350,color="m")
plt.scatter (730,140,color="m'")
plt.title('Class: Agriculture - Date 0'")
plt.tight_layout ()

Class: Natural Vegetation - Date 0
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1000 A

1200

Class: Agriculture - Date 0

13.4 Time Series extraction

Now let’s use our “samples” to extract some time series profiles.

import matplotlib.dates as mdates

fn = img[:,1100,185] #Natural vegetation
agr = img[:,450,350] #Agriculture pattern

#get dates from xarray
dates = xarray.time.values

fig, ax = plt.subplots(l,2, figsize=(20,2))
ax[0] .plot (dates, fn,color = 'r'")
ax([0].title.set_text ('Natural Vegetation')
ax[0] .set_xticklabels (dates, rotation=45)

(continues on next page)

13.4. Time Series extraction
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(continued from previous page)

ax[1l] .plot (dates,agr, color = 'm'")
ax[1l].title.set_text ('Agriculture')
ax[1l].set_xticklabels (dates, rotation=45);
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13.5 Polar plot

The stmetrics is currently composed by 4 modules:
* Metrics - With some functions to compute the all metrics available
* Basics - That has the implementation of the basics metrics
¢ Polar - That has the implementation of the polar metrics proposed by Korting (2013).
* Fractal - That has the implementatio of fractal metrics that are currently under assessment.

The polar approach proposed by Korting (2013) convert the time series to a polar coordinate system. This way we
can plot the series in this space just to look at it and get some insights about the time series. For this, we can use the
funtion polar_plot.

The plot as you will see is composed by the series over four quadrants. The idea here is observe a stronger response
over a specific period. Imagine that your time series encompass a year of observations, this way each quadrant
represents 3 months.
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Reference: Korting, Thales & Céamara, Gilberto & Fonseca, Leila. (2013).Land Cover Detection Using
Temporal Features Based On Polar Representation.

[9]: #Plotting our time series samples
#Natural Vegetation
print ('Natural Vegetation')
stmetrics.polar.polar_plot (fn)

print ('Agriculture')
#Pasture
stmetrics.polar.polar_plot (agr)
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13.6 Metrics computation

The stmetrics has two functions to compute the metrics. The get_metrics function was designed to be used for
compute the metrics of one time series. Along with the metrics, using the function you can also see the polar plot. Just
remember, one series each time.

The sits2metrics function was developed to compute the metrics over images, as the name states. For this
function we use multiprocessing package to improve perfomance. Don’t worry if it is using the whole campacity of
your system, it was designed to do it.

*NOTE:* This process may take sometime, tha package is computing 28 metrics!

im_metrics = stmetrics.metrics.sits2metrics (xarray)

im_metrics

<xarray.Dataset>

Dimensions: (band: 1, metric: 28, time: 24, x: 1207, y: 1263)
Coordinates:
* band (band) int32 1
* Y (y) float64 9.965e+06 9.965e+06 9.884e+06 9.884e+06
* X (x) float64 5.866e+06 5.866e+06 5.943e+06 5.943e+06
* time (time) object '2019-09-13' '2019-08-28' '2018-09-13"
lon (y, x) float6d4 -45.92 -45.92 -45.92 -45.18 -45.18 -45.18
lat (y, x) floated -12.2 -12.2 -12.2 -12.2 -12.9 -12.9 -12.9
* metric (metric) object 'max_ts' 'min_ts' 'hurst_exp' 'katz_fd'
Data variables:
NDVI (time, band, y, x) float64 nan nan nan nan nan nan nan nan

NDVI_metrics (metric, y, x) float64 nan nan nan nan nan nan nan nan nan
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13.7 Image Metrics

The output of get_metrics and sits2metrics follows the same order and can be acessed with the

list_metrics function that is available at ut 1 1 s module.

stmetrics.utils.list_metrics ()

["max_ts',
'min_ts',
'mean_ts',
'std_ts',
'sum_ts',
'amplitude_ts',
'mse_ts',
'fslope_ts',
'skew_ts',
'amd_ts',
'abs_sum_ts',
'iqr_ts',
'fqr_ts',
'tgr_ts',
'sqr_ts',
'ecc_metric',
'gyration_radius',
'area_ts',
'polar_balance',
'angle',
'area_qgl',
'area_qg2"',
'area_qg3"',
'area_qg4',
'csi',
'dfa_fd’',
'hurst_exp',
'katz_fd']

13.8 Now let’s plot the results!

Don’t worry if some metric is too noise or you don’t see a clear pattern, some features are not always representative.

header = stmetrics.utils.list_metrics/()
img = im _metrics.NDVI_metrics.values

plt.figure(l,figsize=(15,30))

for b,n in zip(range(l, img.shape[0]+1),header):

plt.subplot (14,2,b,)

plt.imshow (img[b-1,:, :])
plt.scatter(1100,185,color="r")
plt.scatter (1000,800,color="r")
plt.scatter (450,350,color="m")
plt.scatter (730,140, color="m")
plt.tight_layout ()

plt.title (n)

(continues on next page)
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(continued from previous page)

plt.show ()
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13.8. Now let’s plot the results!
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13.9 That’s all!

Soon we will have more examples and usages to perform time series classifications.

Keep watching our repo on github https://github.com/brazil-data-cube/stmetrics and our documentation https://
stmetrics.readthedocs.io/en/latest/!

If you find any problems in the package, please, submit an issue on github.

Thanks for checking!
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cHAPTER 14

Benchmark

We assessed the performance of two main functions of stmetrics: get_metrics and sits2metrics. For that,
we used a core 17-8700 CPU @ 3.2 GHz and 16GB of RAM. With this test, we wanted to assess the performance of
the package to compute the metrics available under different scenarios.

We compared the time and memory performance of those functions using different approaches. For get_metrics
function, we assessed the performance using a random time series, created with NumPy, with different lengths. For
the sits2metrics function, we used images with different dimensions in columns and rows, maintaining the same
length.

14.1 Install stmetrics

Ipip install git+https://github.com/brazil-data-cube/stmetrics.git

14.2 get_metrics

To evaluate the performance of get_metrics function, we implemented a simple test using a random time series
built with NumPy package, using the following code.

import time

from stmetrics import metrics
import numpy

import matplotlib.pyplot as plt

The get_metrics function was designed to be used for compute the metrics of one time series. The stmetrics is
currently composed by 4 modules:
e Metrics - With some functions to compute the all metrics available

* Basics - That has the implementation of the basics metrics
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¢ Polar - That has the implementation of the polar metrics proposed by Korting (2013).
* Fractal - That has the implementatio of fractal metrics that are currently under assessment.

Along with the metrics, get _metrics function also returns the polar plot of the inpute time series.

[2]: metrics.get_metrics (numpy.random.rand(1l,20) [0], show = True)

075 1

050

025 1

000

—0.25 A

—0.50 A

—0.75 A

-0.75 -050 025 000 025 050 075

[2]: {'basics': {'max_ts': 0.9759792296756558,
'min_ts': 0.04808538721672284,
'mean_ts': 0.6109056388733799,
'std_ts': 0.29056364848092775,
'sum_ts': 12.218112777467597,
'amplitude_ts': 0.9278938424589329,
'mse_ts': 9.152658668516812,
'fslope_ts': 0.7243171421102885,
'skew_ts': -0.54738857482128,
'amd_ts': 0.3327714629554783,
'abs_sum_ts': 12.218112777467597,
'igr_ts': 0.36797126163222327,
'fgr_ts': 0.42877007608749085,
'tgqr_ts': 0.8754980682995873,
'sqr_ts': 0.6213153669212852},

'polar': {'ecc_metric': 0.9751625623899488,
'gyration_radius': 0.832372517625857,
'area_ts': 1.192937763415025,
'polar_balance': 0.06548526239149761,
'angle': 3.306939635357677,

'area_qgl': 0.3946454162385842,
'area_qg2': 0.2641239104991063,
'area_qg3': 0.3158387113661037,
'area_qg4': 0.21832972531123107,
'shape_index': 4.293564433772728,
'fill_rate': 0.8128851173945503,
'fill_rate2': 0.4292998579836149,
'symmetry_ts': 5.302775225959127},

'fractal': {'dfa_fd': 0.30195613396763243,
'hurst_exp': 0.7610313450623636,
'katz_fd': 2.3097390361381698}}

[3]: tempos = []
(continues on next page)
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(continued from previous page)
for i in range(5,1000) :
start = time.time ()
metrics.get_metrics (numpy.random.rand(1l,1) [0])
end = time.time ()
tempos.append(end - start)

figure = plt.figure(figsize=(13,5))
plt.plot (tempos)

plt.ylabel ('Time (s)')

plt.xlabel ('Time Series Lenght')
plt.grid()

plt.show ()
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As shown above, the get_metrics function presents a quadratic response regarding the length of the time series.
It is able to compute the metrics for a time series with 1,000 data points in less than two second. This beahaviour
is explained by some polar metrics that requires more computational time, for example the symmetry_ts function.
For the following versions, we will try to improve the performance of the package.

14.3 sits2metrics

To evaluate the sits2metrics function we used a sample image with the following dimensions: 249x394 and 12
dates. With this test, we aim to assess how the size of the image impacts the total time to compute the metrics.

This function uses the multiprocessing library to speed up the process. According to the previous test, a time series
with 12 dates as our sample requires 0.015s to compute the metrics for one pixel, therefore using a single core this
should require 1,318s or approximately 21minutes. With the parallel implementation, according to our tests, the
package performs the same task in 6 minutes.

import rasterio

sits = rasterio.open('https://github.com/tkorting/remote-sensing-images/blob/master/
—evil_corte.tif?raw=true') .read()

tempos_sits = []
dim =[]

(continues on next page)
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(continued from previous page)

for i in range(10,210,10):
dim.append(str(i)+'x"+str(i))
start = time.time ()
metrics.sits2metrics (sits[:,:1,:1])
end = time.time ()
tempos_sits.append(end - start)

fig = plt.figure(figsize=(15,5))
plt.bar (dim, tempos_sits)
plt.ylabel ('Time (s)')

plt.xlabel ('SITS dimensions (HxW) ')
plt.xticks (rotation=45)

plt.grid()

plt.show ()

Time (s}

SITS dimensions [HxW)

Note: This documentation is not finished. Parts of the description are incomplete and may need corrections. Please,
come back later for the definitive documentation.

stmetrics is a python package that aims at making the process of feature extraction of state-of-the-art time-series as
simple as possible.

It provides functions to support time-series analyzes that includes not only the feature extraction but also spatio-
temporal analysis through a spatio-temporal segmentation and filtering approaches that are a first step to the full
exploitation of the spatio-temporal information.

The documentation presented here summarize the technical aspects of the package. The methodoogical application of
the package and it’s methods are available at the Publications section.
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Index

A

abs_sum_ts () (in module stmetrics.basics), 15
amd_ts () (in module stmetrics.basics), 15
amplitude_ts () (in module stmetrics.basics), 15
angle () (in module stmetrics.polar), 11

area_dl () (in module stmetrics.polar), 11
area_qg2 () (in module stmetrics.polar), 11
area_qg3 () (in module stmetrics.polar), 11
area_qg4 () (in module stmetrics.polar), 12
area_season () (in module stmetrics.polar), 12
area_ts () (in module stmetrics.polar), 12
aspect_ratio () (in module stmetrics.spatial), 21

B

bdc2xarray () (in module stmetrics.utils), 27

C

check_input () (in module stmetrics.utils), 27
create_polygon () (in module stmetrics.utils), 27
csi () (in module stmetrics.polar), 12

D

dfa_fd () (in module stmetrics.fractal), 19
distance () (in module stmetrics.spatial), 21
distance_fast () (in module stmetrics.spatial), 22
dtw_filter () (in module stmetrics.spatial), 22

E

ecc_metric () (in module stmetrics.polar), 12
extract_features () (in module stmetrics.spatial),
23

F

fixseries () (in module stmetrics.utils), 27
fqr_ts () (in module stmetrics.basics), 15
fslope_ts () (in module stmetrics.basics), 16

G

get_list_of_points () (in module stmetrics.utils),
28

get_metrics () (in module stmetrics.metrics), 9
get_seasons () (in module stmetrics.polar), 13
gyration_radius () (in module stmetrics.polar), 13

H

hurst_exp () (in module stmetrics.fractal), 19

init_cluster_hex (in module stmetrics.spatial), 23

init_cluster_regular (in  module  stmet-
rics.spatial), 23

iqr_ts () (in module stmetrics.basics), 16

K

katz_fd () (in module stmetrics.fractal), 20

L

length () (in module stmetrics.spatial), 24
list_metrics () (in module stmetrics.utils), 28

M

max_ts () (in module stmetrics.basics), 16
mean_ts () (in module stmetrics.basics), 16
min_ts () (in module stmetrics.basics), 16
mse_ts () (in module stmetrics.basics), 16

P

polar_balance () (in module stmetrics.polar), 13
polar_plot () (in module stmetrics.polar), 13
postprocessing () (in module stmetrics.spatial), 24

R

rectangular_fit () (in module stmetrics.spatial),
24

reock_compactness () (in
rics.spatial), 24

module stmet-

S

seg_metrics () (in module stmetrics.spatial), 25
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sits2metrics () (in module stmetrics.metrics), 9
skew_ts () (in module stmetrics.basics), 17
snitc () (in module stmetrics.spatial), 25
sqr_ts () (in module stmetrics.basics), 17
std_ts () (in module stmetrics.basics), 17

stmetrics
stmetrics
stmetrics
stmetrics
stmetrics
stmetrics

.basics (module), 15
.fractal (module), 19
.metrics (module), 9
.polar (module), 11
.spatial (module), 21
.utils (module), 27

sum_ts () (in module stmetrics.basics), 17
symmetric_distance () (in  module
rics.polar), 13

symmetry ()

T

(in module stmetrics.spatial), 26

tqr_ts () (in module stmetrics.basics), 17

ts_basics () (in module stmetrics.basics), 17
ts_~fractal () (in module stmetrics.fractal), 20
ts_polar ()

U

(in module stmetrics.polar), 13

stmet-

update_cluster (in module stmetrics.spatial), 26

W

width () (in module stmetrics.spatial), 26
write_pandas () (in module stmetrics.spatial), 26
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